By Sylvia Earle1,2, Dawn J. Wright3,4, Samantha Joye5, Dan Laffoley6, John Baxter6, Carl Safina8, and Patty Elkus2
1 National Geographic Society Explorer-in-Residence, Washington, DC 20036, USA.
2 Mission Blue, Napa, CA 94581, USA.
3 Environmental Systems Research Institute, Redlands, CA 92373, USA.
4 College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USA.
5 Department of Marine Sciences, University of Georgia, Athens, GA 30602, USA.
6 International Union for Conservation of Nature World Commission on Protected Areas, Gland, SWITZERLAND.
7 School of Marine and Atmospheric Sciences, Stony Brook University, Setauket, NY 11733, USA.
The ocean is facing unprecedented pressures that are causing massive ecosystem and nutrient cycle disruption the result of industrial-scale depletion of ocean wildlife and destabilization of steady-state ecosystems. This occurs not only on the seafloor by trawling, dredging, drilling, and mining (1) but also in the water column with nets, long lines, fish aggregating devices and other techniques; methods introduced in recent decades to extract with unprecedented speed and scale from ecosystems hundreds of millions of years in the making. Indeed, the carbon cycle/climate impacts of overfishing of the ocean biomass are tremendous (2), and restoring ocean life could have a huge impact, not just on ocean health but on CO2 accumulation in the atmosphere (3). Since more than half of the oxygen produced on Earth is derived from phytoplankton, decline of oxygen in the ocean concerns life on land as well.

Example of a visualization representing a new three-dimensional classification for the ocean known as ecological marine units (EMUs), www.esri.com/ecological-marine-units. The region shown is south of Tasmania, Australia [though we at Esri can re-create for any part of the world including the Baltic Sea or Indian Ocean highlighted in the Breitburg et al. paper]. Although the EMUs are mapped as a continuous surface, representing them in 3D is facilitated using columnar stacks (in this case dissolved oxygen), allowing visualization of EMUs beneath the ocean surface at evenly-spaced locations. In the coastal zone, EMUs are single or few, whereas offshore there are more and deeper EMUs. Visualization by Sean Breyer and Keith Van Graafeiland, both of Esri.

Interactive Atlas of Marine Protection. Marine Conservation Institute (2018), MPAtlas [Online]. Seattle, WA. Available at: www.mpatlas.org/map/mpas. [Accessed 15-Jan-2018].

There is accelerating momentum and opportunity for designating very large marine protected areas. Research suggests large MPAs are much more cost-effective to implement and manage compared to smaller MPAs and in general larger areas will provide better protection from activities that occur outside the MPA. Marine Conservation Institute (2018), MPAtlas [Online]. Seattle, WA. Available at: www.mpatlas.org/protection-dashboard/very-large-mpas [Accessed 15-Jan-2018].
- A. Boetius, M. Haeckel, Mind the seafloor. Science 359, 34 (2018). [link]
- C. B. Woodson, J. R. Schramski, S. B. Joye, A unifying theory for top-heavy ecosystem structure in the ocean. Nature Communications 9, 23 (2018). [link]
- D. Laffoley, J. M. Baxter, Eds., Explaining Ocean Warming: Causes, Scale, Effects, and Consequences, (International Union for Conservation of Nature and Natural Resources (IUCN), Gland, Switzerland), 456 pp., (2016). [link]
- Á. López-Urrutia, E. San Martin, R. P. Harris, X. Irigoien, Scaling the metabolic balance of the oceans. Proceedings of the National Academy of Sciences 103, 8739-8744 (2006). [link]
- L. Cheng et al., Improved estimates of ocean heat content from 1960 to 2015. Science Advances 3,(2017). [link]
- R. N. Glud et al., High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth. Nature Geoscience 6, 284-288 (2013). [link]
- A. Witze, 3D ocean map tracks ecosystems in unprecedented detail. Nature 541, 10-11 (2017). [link]
- R. Sayre et al., A three-dimensional mapping of the ocean based on environmental data. Oceanography 30, 90-103 (2017). [link]
- D. Laffoley, J. M. Baxter, Eds., Ocean Deoxygenation – Everyone’s Problem: Causes, Impacts, Consequences and Solutions, (International Union for Conservation of Nature and Natural Resources (IUCN), Gland, Switzerland, in press 2018).