Esri Celebrates Outstanding Applications of Geographic Technology

Esri logoMore than 170 Organizations Recognized for Innovative Maps and Apps

Esri celebrated more than 170 organizations during the Special Achievement in GIS (SAG) Awards ceremony yesterday at the Esri User Conference (Esri UC) in San Diego, California. The SAG Awards highlight users that have shown vision, leadership, hard work, and innovation in their use of Esri’s geographic information system (GIS) technology.

“Every day, people and organizations are improving our world and driving change through geospatial technology,” says Esri president Jack Dangermond. “We are humbled by their passion and deeply appreciative of their tireless work. It’s an honor for us to recognize their efforts and it’s something that I personally look forward to every year.”

Organizations from around the world honored at the Esri UC span industries including environmental management, education, government, health and human services, natural resources, nonprofits, telecommunications, transportation, and utilities.

The SAG Awards ceremony was held at the San Diego Convention Center on July 16, 2014. For more information about the 2014 Special Achievement in GIS Award winners, including project information and photos, visit esri.com/sag.

[Source: Esri press release]

What’s the Deal with 3DEP?

USGSReplacing Outdated and Inconsistent Elevation Data Will Save Lives and Improve Prosperity Across Our Nation

The USGS, along with other federal, state, local and private agencies is establishing a new 3D Elevation Program (3DEP) designed to respond to the growing needs for three-dimensional mapping data of the United States. This coordinated partnership can help meet the country’s needs for high-quality, 3D elevation data.

Current and accurate 3D elevation data are essential to help communities cope with natural hazards and disasters such as floods and landslides, support infrastructure, ensure agricultural success, strengthen environmental decision-making and bolster national security.

The primary goal of the 3DEP partnership is to systematically collect 3D elevation data across the Nation, using lidar, a remote sensing detection system that works on the principle of radar, but uses light from a laser.

A comparison of an air photo and a lidar image of an area along Secondary Road and Camp Creek, 12 miles north of John Day, OR. The lidar image allows identification of landslide activity that is otherwise masked by trees. (Photo courtesy of the Oregon Department of Geology and Mineral Industries).

A comparison of an air photo and a lidar image of an area along Secondary Road and Camp Creek, 12 miles north of John Day, OR. The lidar image allows identification of landslide activity that is otherwise masked by trees. (Photo courtesy of the Oregon Department of Geology and Mineral Industries).

“We are excited about working with partners to apply the game-changing technology of lidar to benefit many critical needs of national importance,” said Kevin Gallagher, USGS Associate Director of Core Science Systems. “For example, FEMA and NOAA are some of our strongest partners because they rely on this type of data to significantly improve floodplain mapping and to better communicate flood risks to communities and citizens.”

The 3DEP initiative is based on the results of the National Enhanced Elevation Assessment that documented more than 600 business and science uses across 34 Federal agencies, all 50 States, selected local government and Tribal offices, and private and nonprofit organizations.  The assessment also shows that 3DEP would provide more than $690 million annually in new benefits to government entities, the private sector, and citizens.

A recent White House fact sheet described how accessibility of accurate, high-quality 3D elevation data provides the foundation to the Administration’s overall plan to assist populations in the areas of flood risk management, water resource planning, mitigation of coastal erosion and storm surge impacts, and identification of landslide hazards.

The USGS will host a briefing on Capitol Hill on July 25 to further describe the importance, benefits and growing needs for 3D elevation data.

More information about 3DEP and state specific fact sheets is available online.

[Source: USGS press release]

Mapping Sleeping Bees within Their Nest: Spatial and Temporal Analysis of Worker Honey Bee Sleep

PLOS_ONEPLOS One, Published 16 July 2014

Barrett Anthony Klein, Martin Stiegler, Arno Klein, and Jürgen Tautz

“Patterns of behavior within societies have long been visualized and interpreted using maps. Mapping the occurrence of sleep across individuals within a society could offer clues as to functional aspects of sleep. In spite of this, a detailed spatial analysis of sleep has never been conducted on an invertebrate society. We introduce the concept of mapping sleep across an insect society, and provide an empirical example, mapping sleep patterns within colonies of European honey bees (Apis mellifera L.). Honey bees face variables such as temperature and position of resources within their colony’s nest that may impact their sleep.

Infrared images revealing thermal activity across beehives. (A) Sequence of colony-scale changes across the entrance side of Colony 1. In clockwise order from the upper left corner, 1700, 0400, 0900 and 1500 h, respectively. Entrance/exit is in the lower left corner of the hive, leading out tube at left of each image. Brood comb is most easily seen as the glowing warm area at 0400 h. (B) Observation hive containing Colony 2, with filter-covered lamp at upper right, and bees visibly exiting hive tunnel at lower right. (C) Exposed nest composed of parallel sheets of comb, set up by Dirk Ahrens-Lagast to induce bees to construct a more natural nest architecture; not used in study. B.A.K. took all images with FLIR thermal cameras on non-experiment days under different ambient temperature conditions. Temperature scale values (°C) were adjusted for thermal camera settings.

Infrared image revealing thermal activity across beehives. Exposed nest composed of parallel sheets of comb, set up by Dirk Ahrens-Lagast to induce bees to construct a more natural nest architecture; not used in study. B.A.K. took all images with FLIR thermal cameras on non-experiment days under different ambient temperature conditions. Temperature scale values (°C) were adjusted for thermal camera settings.

“We mapped sleep behavior and temperature of worker bees and produced maps of their nest’s comb contents as the colony grew and contents changed. By following marked bees, we discovered that individuals slept in many locations, but bees of different worker castes slept in different areas of the nest relative to position of the brood and surrounding temperature. Older worker bees generally slept outside cells, closer to the perimeter of the nest, in colder regions, and away from uncapped brood. Younger worker bees generally slept inside cells and closer to the center of the nest, and spent more time asleep than awake when surrounded by uncapped brood. The average surface temperature of sleeping foragers was lower than the surface temperature of their surroundings, offering a possible indicator of sleep for this caste. We propose mechanisms that could generate caste-dependent sleep patterns and discuss functional significance of these patterns.”