Crowdsourcing, Citizen Sensing and Sensor Web Technologies for Public and Environmental Health Surveillance and Crisis Management: Trends, OGC Standards and Application Examples

International Journal of Health GeographicsInternational Journal of Health Geographics 10:67, Published 21 December 2011

Maged N Kamel Boulos, Bernd Resch, David N Crowley, John G Breslin, Gunho Sohn, Russ Burtner, William A Pike, Eduardo Jezierski and Kuo-Yu Slayer Chuang

“‘Wikification of GIS by the masses’ is a phrase-term first coined by Kamel Boulos in 2005, two years earlier than Goodchild’s term ‘Volunteered Geographic Information’. Six years later (2005-2011), OpenStreetMap and Google Earth (GE) are now full-fledged, crowdsourced ‘Wikipedias of the Earth’ par excellence, with millions of users contributing their own layers to GE, attaching photos, videos, notes and even 3-D (three dimensional) models to locations in GE.

Mobile CO measurements in the city of Copenhagen (December 2009)

Mobile CO measurements in the city of Copenhagen (December 2009)

“From using Twitter in participatory sensing and bicycle-mounted sensors in pervasive environmental sensing, to creating a 100,000-sensor geo-mashup using Semantic Web technology, to the 3-D visualisation of indoor and outdoor surveillance data in real-time and the development of next-generation, collaborative natural user interfaces that will power the spatially-enabled public health and emergency situation rooms of the future, where sensor data and citizen reports can be triaged and acted upon in real-time by distributed teams of professionals, this paper offers a comprehensive state-of-the-art review of the overlapping domains of the Sensor Web, citizen sensing and ‘human-in-the-loop sensing’ in the era of the Mobile and Social Web, and the roles these domains can play in environmental and public health surveillance and crisis/disaster informatics. We provide an in-depth review of the key issues and trends in these areas, the challenges faced when reasoning and making decisions with real-time crowdsourced data (such as issues of information overload, “noise”, misinformation, bias and trust), the core technologies and Open Geospatial Consortium (OGC) standards involved (Sensor Web Enablement and Open GeoSMS), as well as a few outstanding project implementation examples from around the world. ”

A Land-use and Land-cover Modeling Strategy to Support a National Assessment of Carbon Stocks and Fluxes

Applied Geography

Applied Geography, Volume 34, May 2012

Terry L. Sohl, Benjamin M. Sleeter, Zhiliang Zhu, Kristi L. Sayler, Stacie Bennett, Michelle Bouchard, Ryan Reker, Todd Hawbaker, Anne Wein, Shuguang Liu, Ronald Kanengieter, William Acevedo


  • The USGS is analyzing scenarios of land-cover change and resultant effects on carbon.
  • A unique land-cover modeling framework was developed to support this work.
  • Downscaled scenarios consistent with IPCC scenarios were developed.
  • The FORE-SCE model was used to create spatially explicit land-cover projections.
  • The methodology is demonstrated for the first completed U.S. ecoregion.

“Changes in land use, land cover, disturbance regimes, and land management have considerable influence on carbon and greenhouse gas (GHG) fluxes within ecosystems. Through targeted land-use and land-management activities, ecosystems can be managed to enhance carbon sequestration and mitigate fluxes of other GHGs. National-scale, comprehensive analyses of carbon sequestration potential by ecosystem are needed, with a consistent, nationally applicable land-use and land-cover (LULC) modeling framework a key component of such analyses. The U.S. Geological Survey has initiated a project to analyze current and projected future GHG fluxes by ecosystem and quantify potential mitigation strategies. We have developed a unique LULC modeling framework to support this work. Downscaled scenarios consistent with IPCC Special Report on Emissions Scenarios (SRES) were constructed for U.S. ecoregions, and the FORE-SCE model was used to spatially map the scenarios. Results for a prototype demonstrate our ability to model LULC change and inform a biogeochemical modeling framework for analysis of subsequent GHG fluxes. The methodology was then successfully used to model LULC change for four IPCC SRES scenarios for an ecoregion in the Great Plains. The scenario-based LULC projections are now being used to analyze potential GHG impacts of LULC change across the U.S.”