New Map Offers Global View of Health-sapping Air Pollution

In many developing countries, the absence of surface-based air pollution sensors makes it difficult, and in some cases impossible, to get even a rough estimate of the abundance of a subcategory of airborne particles that epidemiologists suspect contributes to millions of premature deaths each year. The problematic particles, called fine particulate matter (PM2.5), are 2.5 micrometers or less in diameter, about a tenth the fraction of human hair. These small particles can get past the body’s normal defenses and penetrate deep into the lungs.

To fill in these gaps in surface-based PM2.5 measurements, experts look toward satellites to provide a global perspective. Yet, satellite instruments have generally struggled to achieve accurate measurements of the particles in near-surface air. The problem: Most satellite instruments can’t distinguish particles close to the ground from those high in the atmosphere. In addition, clouds tend to obscure the view. And bright land surfaces, such as snow, desert sand, and those found in certain urban areas can mar measurements.

However, the view got a bit clearer this summer with the publication of the first long-term global map of PM2.5 in a recent issue of Environmental Health Perspectives. Canadian researchers Aaron van Donkelaar and Randall Martin at Dalhousie University, Halifax, Nova Scotia, Canada, created the map by blending total-column aerosol amount measurements from two NASA satellite instruments with information about the vertical distribution of aerosols from a computer model.

Their map, which shows the average PM2.5 results between 2001 and 2006, offers the most comprehensive view of the health-sapping particles to date. Though the new blending technique has not necessarily produced more accurate pollution measurements over developed regions that have well-established surface-based monitoring networks, it has provided the first PM2.5 satellite estimates in a number of developing countries that have had no estimates of air pollution levels until now.

The map shows very high levels of PM2.5 in a broad swath stretching from the Saharan Desert in Northern Africa to Eastern Asia. When compared with maps of population density, it suggests more than 80 percent of the world’s population breathe polluted air that exceeds the World Health Organization’s recommended level of 10 micrograms per cubic meter. Levels of PM2.5 are comparatively low in the United States, though noticeable pockets are clearly visible over urban areas in the Midwest and East.

“We still have plenty of work to do to refine this map, but it’s a real step forward,” said Martin, one of the atmospheric scientists who created the map.”We hope this data will be useful in areas that don’t have access to robust ground-based measurements.”

Take a deep breath. Even if the air looks clear, it’s nearly certain you’ve inhaled millions of PM2.5 particles. Though often invisible to humans, such particles are present everywhere in Earth’s atmosphere, and they come from both natural and human sources. Researchers are still working to quantify the precise percentage of natural versus human-generated PM2.5, but it’s clear that both types contribute to the hotspots that show up in the new map.

Wind, for example, lifts large amounts of mineral dust aloft in the Arabian and Saharan deserts. In many heavily urbanized areas, such as eastern China and northern India, power plants and factories that burn coal lack filters and produce a steady stream of sulfate and soot particles. Motor vehicle exhaust also creates significant amounts of nitrates and other particles. Both agricultural burning and diesel engines yield dark sooty particles scientists call black carbon.

Human-generated particles often predominate in urban air — what most people actually breathe — and these particles trouble medical experts the most, explained Arden Pope, an epidemiologist at Brigham Young University, Provo, Utah and one of the world’s leading experts on the health impacts of air pollution. That’s because the smaller PM2.5 particles evade the body defenses—small hair-like structures in the respiratory tract called cilia and hairs in our noses—that do a reasonably good job of clearing or filtering out the larger particles.

Small particles can make their way deep into human lungs and some ultrafine particles can even enter the bloodstream. Once there, they can spark a whole range of diseases including asthma, cardiovascular disease, and bronchitis. The American Heart Association estimates that in the United States alone, PM2.5 air pollution spark some 60,000 deaths a year.

Though PM2.5 as a class of particle clearly poses health problems, researchers have had less success assigning blame to specific types of particles. “There are still big debates about which type of particle is the most toxic,” said Pope. “We’re not sure whether it’s the sulfates, or the nitrates, or even fine dust that’s the most problematic.”

One of the big sticking points: PM2.5 particles frequently mix and create hybrid particles, making it difficult for both satellite and ground-based instruments to parse out the individual effects of the particles.

The Promise of Satellites and PM2.5

The new map, and research that builds upon it, will help guide researchers who attempt to address this and a number of other unresolved questions about PM2.5. The most basic: how much of a public health toll does air pollution take around the globe? “We can see clearly that a tremendous number of people are exposed to high levels of particulates,” said Martin. “But, so far, nobody has looked at what that means in terms of mortality and disease. Most of the epidemiology has focused on developed countries in North America and Europe.”

Now, with this map and dataset in hand, epidemiologists can start to look more closely at how long term exposure to particulate matter in rarely studied parts of the world – such as Asia’s fast-growing cities or areas in North Africa with quantities of dust in the air – affect human health. The new information could even be useful in parts of the United States or Western Europe where surface monitors, still the gold standard for measuring air quality, are sparse.

In addition to using satellite data from NASA’s Multi-angle Imaging SpectroRadiometer (MISR) that flies on NASA’s Terra satellite and the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument that flies on both NASA’s Aqua and Terra satellites, the researchers used output from a chemical transport model called GEOS-Chem to create the new map.

However, the map does not represent the final word on the global distribution of PM2.5, the researchers who made it emphasize. Although the data blending technique van Donkelaar applied provides a clearer global view of fine particulates, the abundance of PM2.5 could still be off by 25 percent or more in some areas due to remaining uncertainties, explained Ralph Kahn, an expert in remote sensing from NASA’s Goddard Space Flight Center in Greenbelt, Md. and one of the coauthors of the paper.

To improve understanding of airborne particles, NASA scientists have plans to participate in numerous upcoming field campaigns and satellite missions. NASA Goddard, for example, operates a global network of ground-based particle sensors called AERONET that site managers are currently working to enhance and expand. And, later next year, scientists from Goddard’s Institute for Space Studies (GISS) in New York will begin to analyze the first data from Glory, a satellite that carries an innovative type of instrument—a polarimeter—that will measure particle properties in new ways and complement existing instruments capable of measuring aerosols from space.

“We still have some work to do in order to realize the full potential of satellite measurements of air pollution,” said Raymond Hoff, the director of the Goddard Earth Science and Technology Center at the University of Maryland-Baltimore County and the author of a comprehensive review article on the topic published recently in the Journal of the Air & Waste Management Association. “But this is an important step forward.”

[Source: NASA/Goddard Space Flight Center press release]

Pengelly’s Legacy Reconsidered: A GIS Approach to Spatial Analysis of Palaeontological and Archaeological Collections from Kents Cavern, England

Proceedings of the Geologists’ Association, Article in Press, 2010

Sorin Mihai, Joyce Lundberg, Donald A. McFarlane, and Barry Chandler

“Tens of thousands of palaeontological and archaeological remains were collected by William Pengelly during 19th century excavations of Kents Cavern, but are now widely dispersed between museums. This has previously precluded spatial analysis. We have now assembled available museum records into a single database, and, using our previously-reconstructed Pengelly excavation map as a base, we have been able to exploit the unique Pengelly location code to set up a GIS mapping system. This allows, for the first time, the analysis of spatial patterns. In addition, the GIS serves to highlight potential problems of recording or curation in the original data. Here we report on the construction of the GIS system and its first use in the analysis of spatial distribution of bear remains. The maps demonstrate that Ursus deningeri entered the cave through a now-sealed High Level Chamber entrance at the back of the cave in the middle Pleistocene, whereas Ursus arctos accessed the cave in the late Pleistocene through the now-sealed Northeast Gallery entrance. The denning areas are reconstructed as Labyrinth/Bear’s Den for U. deningeri and Vestibule/Great Chamber for U. arctos. Considerable post-mortem re-distribution of the remains of both species is indicated.”

Uncertainty in the Difference between Maps of Future Land Change Scenarios

Sustainability Science, Volume 5, Number 1, 2010, 39-50

Robert Gilmore Pontius and Neeti Neeti

“It is essential to measure whether maps of various scenarios of future land change are meaningfully different, because differences among such maps serve to inform land management. This paper compares the output maps of different scenarios of future land change in a manner that contrasts two different approaches to account for the uncertainty of the simulated projections. The simpler approach interprets the scenario storyline concerning the quantity of each land change transition as assumption, and then considers the range of possibilities concerning the value added by a simulation model that specifies the spatial allocation of land change. The more complex approach estimates the uncertainty of future land maps based on a validation measurement with historic data. The technique is illustrated by a case study that compares two scenarios of future land change in the Plum Island Ecosystems of northeastern Massachusetts, in the United States. Results show that if the model simulates only the spatial allocation of the land changes given the assumed quantity of each transition, then there is a clearly bounded range for the difference between the raw scenario maps; but if the uncertainties are estimated by validation, then the uncertainties can be so great that the output maps do not show meaningful differences. We discuss the implications of these results for a future research agenda of land change modeling. We conclude that a productive approach is to use the simpler method to distinguish clearly between variations in the scenario maps that are due to scenario assumptions versus variations due to the simulation model.”

Sensor Web Enablement for Debris Flow Monitoring System in Taiwan

22nd International CODATA Conference, 24-27 October 2010, Cape Town, South Africa

Tien-Yin Chou, Yao-Min Fang, Lan-Kun Chung

“The debris flow is a tremendous threat to humans’ living environment and safety. The landforms and geologic structure in Taiwan are peculiar, terrains and geology are fractured and unstable. Washout and rainstorms which result in debris flows and landslides in mountain areas occur frequently during the typhoon seasons. To protect inhabitant’s life and properties, scholars and government agencies continuously search for the cause of debris flow and try to build a preventive and warning system for natural hazards. The government in Taiwan had set up 17 debris flow monitoring stations and 3 debris flow monitoring vehicles since 2002. Using those stations, a monitoring network has been established such that the real time monitoring data can be collected and the energy variation during the debris flows can be analyzed accordingly. The monitoring network also has helped to build an alert mechanism. In order to integrate the observation resources, we use OGC-SWE framework to develop a debris flow information platform. In 2009, we had finished SOS (Sensor Observation Service) of OGC-SWE. In 2010, we will continue to develop SAS (Sensor Alert Service) and SPS (Sensor Planning Service). The purpose of debris flow information platform is to build an environment to integrate many kinds of observation resources from different organizations (such as governments, disaster prevention organizations…etc) in Taiwan, and to enhance the efficiency of decision making in disaster mitigation via the debris flow information platform. ”

Canadian Retailer Increases Marketing ROI with GIS

ESRI Canada today presented RONA with an Award of Excellence for its exemplary use of ESRI’s geographic information system (GIS) technology to optimize flyer distribution and maximize return on the company’s marketing investment. Previously, RONA used the same promotional flyer for all of its 700 stores. The company developed a GIS application that has enabled it to better profile customers, focus flyer delivery on profitable areas and reduce costs by eliminating flyers in underperforming areas. The award, which recognizes organizations and individuals for their outstanding achievements in the application of GIS, was presented at the 2010 ESRI Canada User Conference in Montréal.

“RONA has successfully demonstrated how GIS can help businesses enhance market intelligence,” said Alex Miller, president, ESRI Canada. “Through spatial analysis, they can now visualize and better understand the relationships between people, places and behaviours, and gain new insight about customers and their needs. This has allowed them to take a more strategic and targeted approach to marketing, leading to campaigns that deliver greater results.”

In 2009, RONA developed the internal application within only three months using ESRI’s ArcGIS technology. It integrates city maps and data from numerous internal customer databases, Statistics Canada and the AirMiles loyalty program. This provides the company with a nationwide snapshot of their customers, while allowing them to monitor customers through individual profiles linked to specific trade areas. ArcGIS includes easy-to-use wizards, which enables RONA to create analytical models that can be run at the touch of a button. It helps the company to analyze store market areas to determine overlap, find customers who subscribe to newsletters, pinpoint neighborhoods with high concentration of customers and generate reports to guide marketing activities.

“Within six months of implementing the GIS, we’ve significantly reduced flyer distribution costs and increased the effectiveness of our program,” said Marco Mercier, Manager, Flyer Distribution and Network Information, RONA. “We’ve not only gained better control of how much flyers we send out and who we send them to, but have also localized flyer content to better address the diverse needs of our customers across the country. The intelligence that we obtain from our GIS analyses is very compelling.”

RONA is expanding spatial analysis to support other marketing processes, including identifying suitable sites for new stores based on the market potential of neighborhoods.

[Source: ESRI Canada press release]