Skip to content

Temporal and Spatial Analysis of Monogenetic Volcanic Fields

August 16, 2012

University of South Florida, Doctor of Philosophy dissertation, 04 April 2012

Koji Kiyosugi

“Achieving an understanding of the nature of monogenetic volcanic fields depends on identification of the spatial and temporal patterns of volcanism in these fields, and their relationships to structures mapped in the shallow crust and inferred in the deep crust and mantle through interpretation of geochemical, radiometric and geophysical data.

Spatial density maps of volcanic events based on the (a) SAMSE algorithm and (b) LSCV algorithm.

Spatial density maps of volcanic events based on the (a) SAMSE algorithm and (b) LSCV algorithm.

“We investigate the spatial and temporal distributions of volcanism in the Abu Monogenetic Volcano Group, Southwest Japan. E-W elongated volcano distribution, which is identified by a nonparametric kernel method, is found to be consistent with the spatial extent of P-wave velocity anomalies in the lower crust and upper mantle, supporting the idea that the spatial density map of volcanic vents reflects the geometry of a mantle diapir. Estimated basalt supply to the lower crust is constant. This observation and the spatial distribution of volcanic vents suggest stability of magma productivity and essentially constant two-dimensional size of the source mantle diapir.

“We mapped conduits, dike segments, and sills in the San Rafael sub-volcanic field, Utah, where the shallowest part of a Pliocene magmatic system is exceptionally well exposed. The distribution of conduits matches the major features of dike distribution, including development of clusters and distribution of outliers. The comparison of San Rafael conduit distribution and the distributions of volcanoes in several recently active volcanic fields supports the use of statistical models, such as nonparametric kernel methods, in probabilistic hazard assessment for distributed volcanism.

“We developed a new recurrence rate calculation method that uses a Monte Carlo procedure to better reflect and understand the impact of uncertainties of radiometric age determinations on uncertainty of recurrence rate estimates for volcanic activity in the Abu, Yucca Mountain Region, and Izu-Tobu volcanic fields. Results suggest that the recurrence rates of volcanic fields can change by more than one order of magnitude on time scales of several hundred thousand to several million years. This suggests that magma generation rate beneath volcanic fields may change over these time scales. Also, recurrence rate varies more than one order of magnitude between these volcanic fields, consistent with the idea that distributed volcanism may be influenced by both the rate of magma generation and the potential for dike interaction during ascent.”

Follow

Get every new post delivered to your Inbox.

Join 354 other followers

%d bloggers like this: